首页> 美国政府科技报告 >Superlinear Convergence of Primal-Dual Interior Point Algorithms for NonlinearProgramming
【24h】

Superlinear Convergence of Primal-Dual Interior Point Algorithms for NonlinearProgramming

机译:非线性编程原始对偶内点算法的超线性收敛性

获取原文

摘要

The local convergence properties of a class of primal-dual interior point methodsare analyzed. These methods are designed to minimize a nonlinear, nonconvex, objective function subject to linear equality constraints and general inequalities. They involve an inner iteration in which the log-barrier merit function is approximately minimized subject to satisfying the linear equality constraints, and an outer iteration that specifies both the decrease in the barrier parameter and the level of accuracy for the inner minimization.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号