首页> 美国政府科技报告 >Evaluation of Acoustic Doppler Velocity Meters to Quantify Flow From Comal Springs and San Marcos Springs, Texas
【24h】

Evaluation of Acoustic Doppler Velocity Meters to Quantify Flow From Comal Springs and San Marcos Springs, Texas

机译:评估声学多普勒速度仪来量化Comal springs和san marcos springs,Texas的流量

获取原文

摘要

Comal Springs and San Marcos Springs are the two largest springs in Texas, are major discharge points for the San Antonio segment of the Edwards aquifer, and provide habitat for several Federally listed endangered species that depend on adequate springflows for survival. It is therefore imperative that the Edwards Aquifer Authority have accurate and timely springflow data to guide resource management. Discharge points for Comal Springs and San Marcos Springs are submerged in Landa Lake and in Spring Lake, respectively. Flows from the springs currently (2008) are estimated by the U.S Geological Survey in real time as surface-water discharge from conventional stage-discharge ratings at sites downstream from each spring. Recent technological advances and availability of acoustic Doppler velocity meters (ADVMs) now provide tools to collect data (stream velocity) related to springflow that could increase accuracy of real-time estimates of the springflows. The U.S. Geological Survey, in cooperation with the Edwards Aquifer Authority, did a study during May 2006 through September 2007 to evaluate ADVMs to quantify flow from Comal and San Marcos Springs. The evaluation was based on two monitoring approaches: (1) placement of ADVMs in important spring orificesspring run 3 and spring 7 at Comal Springs, and diversion spring at San Marcos Springs; and (2) placement of ADVMs at the nearest flowing streamsComal River new and old channels for Comal Springs, Spring Lake west and east outflow channels and current (2008) San Marcos River streamflow-gaging site for San Marcos Springs. For Comal Springs, ADVM application at spring run 3 and spring 7 was intended to indicate whether the flows of spring run 3 and spring 7 can be related to total springflow. The findings indicate that even though velocity data from both discharge features reflect changes in flow, the data do not reliably show a direct relation to measured streamflow and thus to total Comal Springs flow. ADVMs at the Comal River new channel and old channel sites provide data that potentially could yield more accurate real-time estimates of total Comal Springs flow than streamflow measured at the downstream Comal River site. For San Marcos Springs, the findings indicate shortcomings with ADVM installations at diversion spring and in the west and east outflow channels. However, the accuracy of streamflow measured at the San Marcos River gage as an estimate of real-time San Marcos Springs flow could potentially be increased through use of ADVM data from that site.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号