首页> 美国政府科技报告 >Groundwater Quality in the Columbia Plateau, Snake River Plain, and Oahu Basaltic-Rock and Basin-Fill Aquifers in the Northwestern United States and Hawaii, 1992-2010.
【24h】

Groundwater Quality in the Columbia Plateau, Snake River Plain, and Oahu Basaltic-Rock and Basin-Fill Aquifers in the Northwestern United States and Hawaii, 1992-2010.

机译:1992 - 2010年美国西北部和夏威夷的哥伦比亚高原,蛇河平原和瓦胡岛玄武岩和盆地填充含水层的地下水质量。

获取原文

摘要

This assessment of groundwater-quality conditions of the Columbia Plateau, Snake River Plain, and Oahu for the period 1992-2010 is part of the U.S. Geological Surveys National Water Quality Assessment (NAWQA) program. It shows where, when, why, and how specific water-quality conditions occur in groundwater of the three study areas and yields science-based implications for assessing and managing the quality of these water resources. The primary aquifers in the Columbia Plateau, Snake River Plain, and Oahu are mostly composed of fractured basalt, which makes their hydrology and geochemistry similar. In spite of the hydrogeologic similarities, there are climatic differences that affect the agricultural practices overlying the aquifers, which in turn affect the groundwater quality. Understanding groundwater-quality conditions and the natural and human factors that control groundwater quality is important because of the implications to human health, the sustainability of rural agricultural economies, and the substantial costs associated with land and water management, conservation, and regulation. The principal regional aquifers of the Columbia Plateau, Snake River Plain, and Oahu are highly vulnerable to contamination by chemicals applied at the land surface; essentially, they are as vulnerable as many shallow surficial aquifers elsewhere. The permeable and largely unconfined character of principal aquifers in the Columbia Plateau, Snake River Plain, and Oahu allow water and chemicals to infiltrate to the water table despite depths to water commonly in the hundreds of feet. The aquifers are essentially unconfined over large areas, having few extensive clay layers to impede infiltration through permeable volcanic rock and alluvial sediments. Agriculture is intensive in all three study areas, and heavy irrigation has imposed large artificial flows of irrigation recharge that rival or exceed natural recharge rates. Fertilizers and pesticides applied at land surface are leached from soil and transported to deep water tables with the infiltrating irrigation recharge, resulting in a layer of degraded water quality overlying better quality regional groundwater beneath. This irrigation-recharge layer is best known on Oahu, where it has been studied since the 1960s; however, the extent of nitrate and pesticide contamination in the Columbia Plateau and Snake River Plain indicate that the same situation exists in those areas. Contamination from agricultural and urban activities is present not only at shallow depths in surficial materials of the three areas, but extends regionally in the deep, principal bedrock aquifers that are tapped for drinking water by domestic and public-supply wells.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号