首页> 美国政府科技报告 >Mean Integrated Squared Error of Kernel Estimators when the Density and Its Derivative Are Not Necessarily Continuous
【24h】

Mean Integrated Squared Error of Kernel Estimators when the Density and Its Derivative Are Not Necessarily Continuous

机译:密度及其导数不一定连续时核估计的均值积分平方误差

获取原文

摘要

The asymptotic behavior of the mean integrated squared error (MISE), the optimal value of MISE, the asymptotically minimum value of MISE, and the optimal kernel of a density function f of a finite number of random variables identically distributed, when f and its derivative are not necessarily continuous, are studied. Rosenblatt-Epanechinkov's results are extended to the case where the density function is not continuous.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号