首页> 美国政府科技报告 >Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions
【24h】

Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions

机译:单向波动方程的适定性和吸收边界条件

获取原文

摘要

A one-way wave equation is a partial differential equation which, in some approximate sense, behaves like the wave equation in one direction but permits no propagation in the opposite one. The construction of such equations can be reduced to the approximation of the square root of (1-s sup 2) on -1, 1 by a rational function r(s) = p sub m (s)/q sub n(s). Those rational functions r for which the corresponding one-way wave equation is well-posed are characterized both as a partial differential equation and as an absorbing boundary condition for the wave equation. We find that if r(s) interpolates the square root of (1-s sup 2) at sufficiently many points in (-1,1), then well-posedness is assured. It follows that absorbing boundary conditions based on Pade approximation are well-posed if and only if (m, n) lies in one of two distinct diagonals in the Pade table, the two proposed by Engquist and Majda. Analogous results also hold for one-way wave equations derived from Chebyshev or least-squares approximation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号