首页> 美国政府科技报告 >A simulation survey of galaxy interactions
【24h】

A simulation survey of galaxy interactions

机译:星系相互作用的模拟调查

获取原文

摘要

Many carefully selected samples of interacting galaxies have been observed extensively in attempts to clarify whether interaction produces activity in galaxies. Because the sample members represent a wide range of encounter parameters and times, one can then study whether there are correlations between observable encounter features and, for example, Seyfert activity. On the other hand, in theoretical studies, simulations typically deal with either time-consuming detailed modelling of single galaxy pairs or tracing a few model encounters over time. The authors extend the observational survey approach by combining it with a simulation survey. The authors are conducting a survey of model encounters, covering the most important encounter parameters over a wide range. Some parameters, such as companion structure and initial velocity, are demonstratably less important and can be ignored in a first pass. The parameter range must be richly enough sampled so that the authors can evaluate the uniqueness of the observable morphology and velocity structure of the resulting simulated pairs to diagnose unobservable companion orbit parameters. They are using a self-gravitating polar n-body code run on the Cray X-MP at the Alabama Supercomputer Network. For each simulation, the authors have stellar and gas distributions predicted over, typically, a billion years, along with information on gas motions within the disk and any material captured by the companion or lost to the system. Features of disturbed spiral galaxies are sensitive enough to time and encounter parameters so that a match of the simulation survey results to observations can be applied as starting points to infer unobservable orbital or system parameters in actual sample members. This should enable them to examine whether interesting observed properties (Seyfert activity, nuclear star-formation rate) are functions of unobservable dynamical properties which characterize each encounter. Any correlations (or lack of some expected ones) will provide strong clues as to how or whether these phenomena are related to interactions. Aside from its use with such observed samples, this survey should greatly speed determination of initial orbital parameters for more detailed subsequent simulations of individual systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号