首页> 美国政府科技报告 >Potential of Spaced-based High-Energy Neutrino Measurements via the Airshower Cherenkov Signal
【24h】

Potential of Spaced-based High-Energy Neutrino Measurements via the Airshower Cherenkov Signal

机译:通过airshower Cherenkov信号进行基于间隔的高能中微子测量的潜力

获取原文

摘要

Future space-based experiments, such as (Orbiting Wide-angle Light Collectors (OWL)) and JEM-EUSO, view large atmospheric and terrestrial neutrino targets. With energy thresholds slightly above 10(exp 19) eV for observing airshowers via air fluorescence, the potential for observing the cosmogenic neutrino flux associated with the GZK effect is limited. However, the forward Cherenkov signal associated with the airshower can be observed at much lower energies. A simulation was developed to determine the Cherenkov signal strength and spatial extent at low-Earth orbit for upward-moving airshowers. A model of tau neutrino interactions in the Earth was employed to determine the event rate of interactions that yielded a tau lepton which would induce an upward-moving airshower observable by a space-based instrument. The effect of neutrino attenuation by the Earth forces the viewing of the Earth's limb to observe the vT-induced Cherenkov airshower signal at above the OWL Cherenkov energy threshold of approximately 10(exp 16.5) eV for limb-viewed events. Furthermore, the neutrino attenuation limits the effective terrestrial neutrino target area to approximately 3 x 10(exp 5) square km at 10(exp 17) eV, for an orbit of 1000 km and an instrumental full Field-of-View of 45 deg. This translates into an observable cosmogenic neutrino event rate of approx. l/year based upon two different models of the cosmogenic neutrino flux, assuming neutrino oscillations and a 10% duty cycle for observation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号