首页> 美国政府科技报告 >Quantitative Infrared Image Analysis Of Thermally-Thin Cellulose Surface Temperatures During Upstream and Downstream Microgravity Flame Spread from A Central Ignition Line.
【24h】

Quantitative Infrared Image Analysis Of Thermally-Thin Cellulose Surface Temperatures During Upstream and Downstream Microgravity Flame Spread from A Central Ignition Line.

机译:中心点火线上游和下游微重力火焰蔓延过程中热薄纤维素表面温度的定量红外图像分析。

获取原文

摘要

Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained at 30 Hz during microgravity flame spread tests in the 10 second Japan Microgravity Center (JAMIC). The tests also used a color video of the surface view and color images of the edge view using 35 millimeter 1600 Kodak Ektapress film at 2 Hz. The cellulose fuel samples (50% long fibers from lumi pine and 50% short fibers from birch) were made with an area density of 60 grams per square meters. The samples were mounted in the center of a 12 centimeter wide by 16 centimeter tall flow duct that uses a downstream fan to draw the air through the flow duct. Samples were ignited after the experiment package was released using a straight hot wire across the center of the 7.5 centimeter wide by 14 centimeter long samples. One case, at 1 atmosphere 35%O2 in N2, at a forced flow of 10 centimeters per second, is presented here. In this case, as the test progresses, the single flame begins to separate into simultaneous upstream and downstream flames. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号