首页> 美国政府科技报告 >DCT quantization matrices visually optimized for individual images
【24h】

DCT quantization matrices visually optimized for individual images

机译:DCT量化矩阵在视觉上针对单个图像进行了优化

获取原文

摘要

This presentation describes how a vision model incorporating contrast sensitivity, contrast masking, and light adaptation is used to design visually optimal quantization matrices for Discrete Cosine Transform image compression. The Discrete Cosine Transform (DCT) underlies several image compression standards (JPEG, MPEG, H.261). The DCT is applied to 8x8 pixel blocks, and the resulting coefficients are quantized by division and rounding. The 8x8 'quantization matrix' of divisors determines the visual quality of the reconstructed image; the design of this matrix is left to the user. Since each DCT coefficient corresponds to a particular spatial frequency in a particular image region, each quantization error consists of a local increment or decrement in a particular frequency. After adjustments for contrast sensitivity, local light adaptation, and local contrast masking, this coefficient error can be converted to a just-noticeable-difference (jnd). The jnd's for different frequencies and image blocks can be pooled to yield a global perceptual error metric. With this metric, we can compute for each image the quantization matrix that minimizes the bit-rate for a given perceptual error, or perceptual error for a given bit-rate. Implementation of this system demonstrates its advantages over existing techniques. A unique feature of this scheme is that the quantization matrix is optimized for each individual image. This is compatible with the JPEG standard, which requires transmission of the quantization matrix.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号