首页> 美国政府科技报告 >Cis-Lunar Base Camp.
【24h】

Cis-Lunar Base Camp.

机译:Cis-Lunar大本营。

获取原文

摘要

Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign costs vary by only 15% from 0.36 to 0.51 on a normalized scale across all campaigns. Thus the development and first flight costs of assessed transportation options are similar. However, the cost of those options per flight beyond the initial operational capability varies by 70% from 0.3 to 1.0 on a normalized scale. The 10-year campaigns assessed begin to show the effect of this large range of cost beyond initial operational capability as they vary approximately 25% with values from 0.75 to 1.0 on the normalized campaign scale. Therefore, it is important to understand both the cost of implementation and first use as well as long term utilization. Finally, minimizing long term recurring costs is critical to the affordability of future human space exploration missions. Finally minimizing long term recurring costs is critical to the affordability of future human space exploration missions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
  • 1. the base camp. [P] . 外国专利: KR2004739310000Y1 . 2014-08-12

    机译:大本营。

  • 2. the device's base camp. [P] . 外国专利: CH282236A . 1952-04-15

    机译:设备的大本营。

  • 3. rotary type archery camp. [P] . 外国专利: KR2004731870000Y1 . 2014-06-13

    机译:旋转式射箭营。

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号