首页> 美国政府科技报告 >Advanced Algorithms and High-Performance Testbed for Large-Scale Site Characterization and Subsurface Target Detecting Using Airborne Ground Penetrating SAR
【24h】

Advanced Algorithms and High-Performance Testbed for Large-Scale Site Characterization and Subsurface Target Detecting Using Airborne Ground Penetrating SAR

机译:利用机载探地saR进行大规模场地表征和次表面目标检测的先进算法和高性能试验台

获取原文

摘要

A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, let Propulsion Laboratory (JPL), Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field (60,000 acres), in Colorado, by using SRI airborne, ground penetrating, Synthetic Aperture Radar (SAR). The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance restbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy (in terms of UXO detection) and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and a minimum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accurate UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized (HH and VV) SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data (i.e., known surface and subsurface UXOs). In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma proving Ground, A7, acquired by SRI SAR.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号