首页> 美国政府科技报告 >Accelerated Training for Large Feedforward Neural Networks
【24h】

Accelerated Training for Large Feedforward Neural Networks

机译:大型前馈神经网络的加速训练

获取原文

摘要

In this paper we introduce a new training algorithm, the scaled variable metric (SVM) method. Our approach attempts to increase the convergence rate of the modified variable metric method. It is also combined with the RBackprop algorithm, which computes the product of the matrix of second derivatives (Hessian) with an arbitrary vector. The RBackprop method allows us to avoid computationally expensive, direct line searches. In addition, it can be utilized in the new, 'predictive' updating technique of the inverse Hessian approximation. We have used directional slope testing to adjust the step size and found that this strategy works exceptionally well in conjunction with the Rbackprop algorithm. Some supplementary, but nevertheless important enhancements to the basic training scheme such as improved setting of a scaling factor for the variable metric update and computationally more efficient procedure for updating the inverse Hessian approximation are presented as well. We summarize by comparing the SVM method with four first- and second- order optimization algorithms including a very effective implementation of the Levenberg-Marquardt method. Our tests indicate promising computational speed gains of the new training technique, particularly for large feedforward networks, i.e., for problems where the training process may be the most laborious.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号