首页> 美国政府科技报告 >Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing
【24h】

Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing

机译:具有动态负载平衡的并行四面体网格自适应

获取原文

摘要

The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D-TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region, creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D-TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号