首页> 美国政府科技报告 >Icehouse Effect: A Selective Arctic Cooling Trend Current Models are Missing
【24h】

Icehouse Effect: A Selective Arctic Cooling Trend Current Models are Missing

机译:冰室效应:选择性北极冷却趋势当前模型缺失

获取原文

摘要

The icehouse effect is a hypothesized climate feedback mechanism which could result in human-caused surface cooling trends in polar regions. Once understood in detail, it becomes apparent that these trends, which are discernable in the literature, but have been largely dismissed, do not conflict with the consensus assessment of the evidence, which infers century-scale Arctic warming. In fact, confirmation of the hypothesis would substantially strengthen the argument that there is a detectable human influence on today's climate. This apparent enigma is resolved only through careful attention to the detail of the hypothesis and the data supporting it. The posited surface cooling is entirely dependent on the existence of climate warming in layers capping the stable boundary layer. Also, the cooling is not pandemic, but is selective. It is readily revealed in properly sorted data by making use of the principles of micrometeorological similarity. Specifically, the cooling is manifest under a range of favorable turbulence conditions which can develop and disappear locally on time scales of minutes to hours because of the intrinsically intermittent nature of stable boundary layer turbulence. Because of the fine-scale nature of the processes which produce the cooling, modeling it is a difficult proposition. Vertical resolution on the order of 1 meter is required. Adequate models of intermittent surface fluxes coupled with radiation exchange do not currently exist, not as parameterizations for aggregated systems, nor in large eddy simulation (LES) models. This presentation will introduce the theory. An important testable null hypothesis emerges: the icehouse effect produces a unique signature or 'fingerprint' which could not be produced by any other known process. The presence of this signature will be demonstrated using nearly all available Arctic temperature observations. Its aggregate effect is clearly found in Arctic monthly surface temperature trends when sorted by climatological stability. Using all available Arctic rawinsonde ascents - about 1.1 million profiles, 'frozen moments' of the icehouse processes are captured in various states. Because turbulent time scales are so short in the stable boundary layer. each of these snapshots can be treated as independent -- their chronology is irrelevant. Micrometeorological similarity is invoked to reassemble the soundings into bins of similar stability and it is in a wide, coherent range of these stability bins where the cooling effect is revealed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号