首页> 美国政府科技报告 >Long-Term Creep of a Thin-Walled Inconel 718 Stirling Power-Convertor Heater Head Assessed
【24h】

Long-Term Creep of a Thin-Walled Inconel 718 Stirling Power-Convertor Heater Head Assessed

机译:薄壁Inconel 718斯特林功率转换器加热器头的长期蠕变评估

获取原文

摘要

The Department of Energy and NASA have identified Stirling power convertors as candidate power supply systems for long-duration, deep-space science missions. A key element for qualifying the flight hardware is a long-term durability assessment for critical hot section components of the power convertor. One such critical component is the power convertor heater head. The heater head is a high-temperature pressure vessel that transfers heat to the working gas medium of the convertor, which is typically helium. An efficient heater head design is the result of balancing the divergent requirements of thin walls for increased heat transfer versus thick walls to lower the wall stresses and thus improve creep resistance and durability. In the current design, the heater head is fabricated from the Ni-base superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV). Although IN 718 is a mature alloy system (patented in 1962), there is little long-term (50,000-hr) creep data available for thin-specimen geometries. Since thin-section properties tend to be inferior to thicker samples, it is necessary to generate creep data using specimens with the same geometry as the actual flight hardware. Therefore, one facet of the overall durability assessment program involves generating relatively short-term creep data using thin specimens at the design temperature of 649 C (1200 F).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号