首页> 美国政府科技报告 >Geolocation Assessment Algorithm for CALIPSO Using Coastline Detection
【24h】

Geolocation Assessment Algorithm for CALIPSO Using Coastline Detection

机译:基于海岸线检测的CaLIpsO地理定位评估算法

获取原文

摘要

Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) is a joint satellite mission between NASA and the French space agency CNES. The investigation will gather long-term, global cloud and aerosol optical and physical properties to improve climate models. The CALIPSO spacecraft is scheduled to launch in 2004 into a 98.2 inclination, 705 km circular orbit approximately 3 minutes behind the Aqua spacecraft. The payload consists of a two-wavelength polarization-sensitive lidar, and two passive imagers operating in the visible (0.645 mm) and infrared (8.7 - 12.0 mm) spectral regions. The imagers are nadir viewing and co-aligned with the lidar. Earth viewing measurements are geolocated to the Earth fixed coordinate system using satellite ephemeris, Earth rotation and geoid, and instrument pointing data. The coastline detection algorithm will assess the accuracy of the CALIPSO geolocation process by analyzing Wide Field Camera (WFC) visible ocean land boundaries. Processing space-time coincident MODIS and WFC scenes with the coastline algorithm will help verify the co-registration requirement with Moderate Resolution Imaging Spectrometer (MODIS) data. This paper quantifies the accuracy of the coastline geolocation assessment algorithm.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号