首页> 美国政府科技报告 >Quasi-Liquid Layer Formation on Ice under Stratospheric Conditions
【24h】

Quasi-Liquid Layer Formation on Ice under Stratospheric Conditions

机译:平流层条件下冰上准液层的形成

获取原文

摘要

Characterization of the interaction of hydrogen chloride (HCl) with ice is essential to understanding at a molecular level the processes responsible for ozone depletion involving polar stratospheric cloud (PSC) particles. To explain the catalytic role PSC particle surfaces play during chlorine activation, we proposed previously that HCl induces the formation of a disordered region on the ice surface, a quasi-liquid layer (QLL), at stratospheric conditions. The QLL is known to exist in pure ice crystals at temperatures near the melting point, but its existence at stratospheric temperatures (-85 C to -70 C) had not been reported yet. We studied the interaction of HCl with ice under stratospheric conditions using the complementary approach of a) ellipsometry to directly monitor the ice surface, using chemical ionization mass spectrometry (CIMS) to monitor the gas phase species present in the ellipsometry experiments, and b) flow-tube experiments with CIMS detection. Here we show that trace amounts of HCl induce QLL formation at stratospheric temperatures, and that the QLL enhances the chlorine-activation reaction of HCl with chlorine nitrate (ClONO2), and also enhances acetic acid (CH3COOH) adsorption.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号