首页> 美国政府科技报告 >Representation of the Geosynchronous Plasma Environment for Spacecraft Charging Calculations
【24h】

Representation of the Geosynchronous Plasma Environment for Spacecraft Charging Calculations

机译:用于航天器充电计算的地球同步等离子体环境的表示

获取原文

摘要

Historically, our ability to predict and postdict surface charging has suffered from both a lack of reliable secondary emission and backscattered electron yields and poor characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. For 13 years Los Alamos National Laboratory (LANL) has been accumulating measurements of electron and proton spectra from Magnetospheric Plasma Analyzer (MPA) instruments aboard a series of geosynchronous satellites. These data provide both a plasma characterization and the potential of the instrument ground. We use electron and ion flux spectra measured by the LANL MPA to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These flux measurements and fits have been corrected for the difference between the measured and calculated potential. The potentials computed using the measured fluxes, the best available material properties of graphite carbon, and a secondary electron escape fraction of 81, are within a factor of three of the measured potential for nearly all the data. Using a Kappa fit to the electron distribution function and a Maxwellian fit to the ion distribution function gives agreement similar to the calculations using the actual data. Alternative spectral representations, including Maxwellian and double Maxwellian for both species, lead to less satisfactory agreement between predicted and measured potentials.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号