首页> 美国政府科技报告 >Ultra-Short-Period W/b{sub 4}c Multi-Layers for X-Ray Optics-Microstructure Limits On Reflectivity.
【24h】

Ultra-Short-Period W/b{sub 4}c Multi-Layers for X-Ray Optics-Microstructure Limits On Reflectivity.

机译:用于X射线光学的超短周期W / b {sub 4} c多层 - 微结构对反射率的限制。

获取原文

摘要

Multilayer thin films are used as Bragg reflectors for soft x-rays in the energy range 50eV < E < 1000eV in many x-ray optics applications such as x-ray microscopes and telescopes, reducing optics for extreme ultraviolet (EUV) lithography, and x-ray polarizers and phase retarders. Applications often depend critically on reflectivity, which has not been systematically characterized for multilayer periods below 20{angstrom}. For this study, W/B{sub 4}C multilayers were fabricated by magnetron sputtering on Si(111), with periods from 48{angstrom} to as little as 4.7{angstrom}. The x-ray reflectivity measured at {lambda} = 1.54{angstrom} and at 45{degrees} incidence (289 eV < E < 860 eV) was found to decrease sharply for multilayer periods less than 15-20{angstrom}. Examination by high-resolution transmission electron microscopy (HRTEM) showed an expansion of the thickness of the W-rich layers of 30-40% from the nominal values, consistent with intermixture of the two materials during sputter growth, and discontinuous W-rich layers for multilayer periods below about 15{angstrom}. The experimental data for the specular reflectivity in the hard and soft x-ray regimes and the diffuse scattering fit well to a model of multilayer roughness. The model is expressed as a power-law dependence of roughness on spatial frequency. Analysis of small-angle scattering in transmission from multilayers grown on freestanding Si{sub 3}N{sub 4} membranes confirms the onset of discontinuity at periods between 14{angstrom} and 22{angstrom}. Spectroscopy studies by x-ray absorption (NEXAFS) and electron energy loss (EELS) at the boron K-edge (188eV) are consistent with changes in the average boron bonding environment, as the multilayer period decreases and the W-rich layers are increasingly thin and dispersed. A discrete W-rich phase is present for periods at least as small as 6.3{angstrom}.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号