首页> 美国政府科技报告 >Effects of hydrogen on electropotential monitoring of stress corrosion crack growth
【24h】

Effects of hydrogen on electropotential monitoring of stress corrosion crack growth

机译:氢对电位监测应力腐蚀裂纹扩展的影响

获取原文

摘要

Electropotential monitoring (EPM) has a crack growth measurement resolution that is an order of magnitude greater than methods that rely on crack mouth opening displacement. However, two phenomena have been identified that compromise the accuracy of the EPM technique. Coolant hydrogen concentrations above those needed to chemically reduce nickel oxide to metallic nickel cause EPM to underestimate the true crack length. The metallic nickel provides an electrical conduction path at contact points across the irregular crack surface thereby lowering the EPM potential. The coolant hydrogen concentration at which this reduction occurs is temperature dependent and correlates with an abrupt decrease in the rate of SCC crack growth. It was also found that EPM can indicate large crack growth when none actually exists. At temperatures > 315 C (600 F) the electrical resistivity of mill annealed Alloy 600 increased by as much as 5% in a period of weeks or months. Each 1% increase in resistivity results in a bias in the EPM indicated cracklength of about 0.2 mm (0.008 inches). Smaller changes in the electrical resistivity of other alloys have been measured which rank as EN52> X-750> 304SS> nickel. It has been shown that these resistivity changes occur during exposure to high temperature water or inert gas. Strategies to minimize the effects of these two phenomena on EPM measurement are discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号