首页> 美国政府科技报告 >Ignition of Isomers of Pentane: An Experimental and Kinetic Modeling Study
【24h】

Ignition of Isomers of Pentane: An Experimental and Kinetic Modeling Study

机译:丁烷异构体的点燃:实验和动力学模型研究

获取原文

摘要

Hydrocarbon ignition is an important element in many practical combustion systems, including internal combustion engines, detonations, pulse combustors, and flame initiation. The rapid compression machine (RCM) is used frequently to study the kinetics of hydrocarbon autoignition, since the reactive gas temperatures and time histories are similar to those seen in automotive engines during Diesel ignition and end gas autoignition leading to engine knock in spark-ignition engines. The RCM provides a rich environment for study of the theory of hydrocarbon oxidation, including degenerate chain branching, alkylperoxy radical isomerization and effects of thermal feedback. The literature of hydrocarbon oxidation studies in the RCM has been summarized recently, and many classes of fuels have been studied. Detailed kinetic modeling is another tool available to study hydrocarbon oxidation in the RCM. The aim of the present work is to determine experimentally the influence of variations in fuel molecular structure on autoignition, and to use a kinetic model to understand the reasons for those variations. This study is unique in that while other studies have addressed variations in pressure and equivalence ratio on ignition, this work addresses effects of variations in fuel molecular structure for all of the isomers of a single fuel formula, pentane, in a RCM. The three isomers of pentane possess many of the structural elements that determine such autoignition characteristics as octane number and variability in cool flame production, so this study will benefit our efforts to describe these effects.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号