首页> 美国政府科技报告 >Controlled Synthesis of Metastable Oxides Utilizing Epitaxy and Epitaxial Stabilization. Final Report
【24h】

Controlled Synthesis of Metastable Oxides Utilizing Epitaxy and Epitaxial Stabilization. Final Report

机译:利用外延和外延稳定化控制合成亚稳氧化物。总结报告

获取原文

摘要

Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the nanometer. These advances were made through the use of epitaxy, epitaxial stabilization, and a combination of composition-control techniques including adsorption-controlled growth and RHEED-based composition control that we have developed, understood, and utilized for the growth of oxides. Also key was extensive characterization (utilizing RHEED, four-circle x-ray diffraction, AFM, TEM, and electrical characterization techniques) in order to study growth modes, optimize growth conditions, and probe the structural, dielectric, and ferroelectric properties of the materials grown. The materials that we have successfully engineered include titanates (PbTiO3, Bi4Ti3O12), tantalates (SrBi2Ta2O9), and niobates (SrBi2Nb2O9); layered combinations of these perovskite-related materials (Bi4Ti3O12-SrTiO3 and Bi4Ti3O12-PbTiO3 Aurivillius phases and metastable PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices), and new metastable phases (Srn+1TinO3n+1 Ruddlesden-Popper phases). The films were grown by reactive MBE and pulsed laser deposition (PLD). Many of these materials are either new or have been synthesized with the highest perfection ever reported. The controlled synthesis of such layered oxide heterostructures offers great potential for tailoring the superconducting, ferroelectric, and dielectric properties of these materials. These properties are important for energy technologies.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号