首页> 外文学位 >Synthesis, microstructural evolution, and properties of polycrystalline and epitaxial metastable titanium tungsten nitride alloy layers.
【24h】

Synthesis, microstructural evolution, and properties of polycrystalline and epitaxial metastable titanium tungsten nitride alloy layers.

机译:多晶和外延亚稳钛氮化钨钛合金层的合成,微观结构演变和性能。

获取原文
获取原文并翻译 | 示例

摘要

Phase composition, microstructural evolution, and physical properties of Ti1−xWxN alloys with 0:5 ≤ x ≤ 1.0 and superlattice layers grown by ultra-high vacuum (UHV) reactive magnetron sputtering were investigated using a combination of x-ray diffraction (XRD), high-resolution reciprocal lattice map (HR-RLM), transmission electron microscopy (TEM), Rutherford backscattering spectroscopy (RBS), Auger electron spectroscopy (AES), wavelength-dispersive electron probe microanalysis (EMPA), x-ray photoelectron spectroscopy (XPS), and Hall measurements.; Polycrystalline Ti1−xWxN alloys were grown on SiO2 at 500°C. Alloys with 0 ≤ x ≤ 0.70 were single-phase B1-NaCl crystal structure with a nitrogen-to-metal ratio N/(Ti+W) ranging from slightly overstoichiometric to understoichiometric. The relaxed lattice constant ao initially increased slightly with increasing W and then decreased below the stoichiometric TiN value for understoichiometric alloys (x > 0.50). TiN-rich alloys have a columnar microstructure exhibiting strong 111 preferred orientation with underdense column boundaries. The irradiation by energetic N backscattered from the W target resulted in WN-rich alloys having 002 preferred orientations with denser microstructures. The normalized room-temperature resistivity increased linearly at a rate dρ/ρ TiNdx = 3.5.; Epitaxial B1-NaCl structure Ti1−xWxN alloys with 0 ≤ x ≤ 0.6 were grown on MgO(001) substrates at 500°C. Alloys with x ≥ 0.05 are slightly overstoichiometric. The alloy lattice parameter a along the film growth direction is 4.251 Å for x ≤ 0.41 and decreases slightly at higher concentrations. Ti0.5W 0.5N alloy exhibits long-range CuPt-type atomic ordering on the cation sublattice. The room-temperature resistivity increases linearly due primarily to alloy scattering, while the temperature coefficient of resistivity (TCR), switches from positive for x ≤ 0.21 to negative because of weak charge carrier localization. The superconducting critical temperature Tc initially increases with x reaching a maximum of 6.67 K at x = 0.21 and decreasing for larger x values.; Epitaxial TiN/Ti0.53W0.47N superlattices with periods Λ ranging from 16 to 205 Å were also grown on MgO(001) substrates at 600°C. The superlattices were single crystals exhibiting coherent interfaces and nearly fully strained. All samples showed metallic behavior while resistivities decrease with period Λ, reaching the level expected for bulk parallel layers at Λ ≥ 70 Å. TCR decreased with Λ but remained positive. Tc is 7.8 K at Λ = 16 Å, decreasing to 5.4 K at Λ = 205 Å.
机译:0:5≤x≤1.0的Ti 1-x W x N合金的相组成,显微组织演变和物理性能,以及通过超高真空生长的超晶格层(使用X射线衍射(XRD),高分辨率互易晶格图(HR-RLM),透射电子显微镜(TEM),卢瑟福背散射光谱(RBS),俄歇电子光谱(AES)的组合研究了UHV)反应磁控溅射),波长色散电子探针微分析(EMPA),X射线光电子能谱(XPS)和霍尔测量。多晶Ti 1-x W x N合金在SiO 2 上于500°C生长。 0≤x≤0.70的合金是单相B1-NaCl晶体结构,氮与金属的比N /(Ti + W)从略高于化学计量比到化学计量不足。对于化学计量不足的合金,弛豫晶格常数a o 最初随W的增加而略有增加,然后降至化学计量的TiN值以下(x> 0.50)。富含TiN的合金具有圆柱状的微观结构,表现出较强的111种优选取向,且具有密集的柱边界。从W靶向后散射的高能N辐照导致富含WN的合金具有002优先取向并具有致密的微观结构。归一化的室温电阻率以dρ/ρ dx = 3.5的速率线性增加。 0≤x≤0.6的外延B1-NaCl结构Ti 1-x W x N合金在500°C的MgO(001)衬底上生长。 x≥0.05的合金化学计量比稍高。沿膜生​​长方向的合金晶格参数a 在x≤0.41时为4.251Å,在较高浓度下略有降低。 Ti 0.5 W 0.5 N合金在阳离子亚晶格上表现出长程CuPt型原子有序性。室温电阻率主要由于合金散射而线性增加,而电阻率温度系数(TCR)由于电荷载流子局部化较弱,从x≤0.21的正值变为负值。超导临界温度T c 最初随着x在x = 0.21时达到最大值6.67 K而增加,而对于较大的x值则降低。在600°C的MgO(001)衬底上也生长了周期为Λ的TiN / Ti 0.53 W 0.47 N超晶格。超晶格是表现出相干界面并且几乎完全应变的单晶。所有样品均表现出金属性能,而电阻率则随着周期Λ的降低而降低,达到了Λ≥70Å体平行层的预期水平。 TCR随Λ降低,但保持正值。 T c 在Λ= 16Å时为7.8 K,在Λ= 205Å时降至5.4K。

著录项

  • 作者

    Tian, Fang.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:46:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号