首页> 美国政府科技报告 >Comprehensive Approaches to Multiphase Flows in Geophysics--Application to Nonisothermal, Nonhomogenous, Unsteady, Large-Scale, Turbulent Dusty Clouds. I. /Hydrodynamic and Thermodynamic RANS and LES Models
【24h】

Comprehensive Approaches to Multiphase Flows in Geophysics--Application to Nonisothermal, Nonhomogenous, Unsteady, Large-Scale, Turbulent Dusty Clouds. I. /Hydrodynamic and Thermodynamic RANS and LES Models

机译:地球物理中多相流的综合方法 - 应用于非等温,非均匀,非定常,大规模,湍流的尘埃云I. /流体动力学和热力学RaNs和LEs模型

获取原文

摘要

The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of thermodynamics and fulfills the necessary requirements for a well-posed initial-value problem. In the next manuscripts, we will further develop specific closures for multiphase RANS, LES, and hybrid-LES.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号