首页> 美国政府科技报告 >Compiling Fast Partial Derivatives of Functions Given by Algorithms
【24h】

Compiling Fast Partial Derivatives of Functions Given by Algorithms

机译:编译算法给出的函数快速偏导数

获取原文

摘要

If the gradient of the function y = f(x sub 1 ,..., x/sub n/) is desired, where f is given by an algoritym Af(x, n, y), most numerical analysts will use numerical differencing. This is a sampling scheme that approximates derivatives by the slope of secants in closely spaced points. Symbolic methods that make full use of the program text of Af should be able to come up with a better way to evaluate the gradient of F. The system Jake described produces gradients significantly faster than numerical differencing. Jake can handle algorithms Af with arbitrary flow of control. Measurements performed on one particular machine suggest that Jake is faster than numerical differencing for n > 8. Somewhat weaker results were obtained for the problem of computing Jacobians of arbitrary shape. (ERA citation 05:028237)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号