首页> 美国政府科技报告 >Effect of Initial Fluid-System Pressures on the Behavior of a Rupture-Disc Pressure-Relief Device
【24h】

Effect of Initial Fluid-System Pressures on the Behavior of a Rupture-Disc Pressure-Relief Device

机译:初始流体系统压力对破裂盘减压装置性能的影响

获取原文

摘要

Rupture disc assemblies are used in piping network systems as a pressure-relief device to protect the system from being exposed to excess pressures. Among the various disc assemblies, the reverse-buckling type is chosen for application in the Clinch River Breeder Reactor. This rupture-disc assembly consists of a portion of a thin spherical shell with its convex side subjected to the fluid system. The reverse-buckling type rupture disc assemblies have been used successfully in environments where the fluid is gas, i.e. highly compressible, and their performances have been judged as adequate in the liquid environment. To analyze the piping system, an analysis method is needed taking into consideration of the fluid/disc interaction, the nonlinear dynamic buckling phenomenon of the disc, and the possible cavitation of the fluid. A computer code SWAAM-I had been written at the Components Technology Division, Argonne National Laboratory. Among its many functions, one is to compute the response of 1-dimensional pressure pulse propagation including the effects of many different types of boundary conditions and possible pipe plasticity. (ERA citation 08:040718)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号