Neutron diffraction was used to measure residual thermal strains developed during postfabrication cooling in titanium aluminide and nickel aluminide intermetallic matrix composites. Silicon carbide /Ti 14Al-21Nb, tungsten and sapphire/NiAl, and sapphire and SiC-coated sapphire/NiAl(sub 25)Fe(sub 10) composites were investigated. The thermal expansion coefficient of the matrix is usually greater than that of the fibers. As such, during cooldown, compressive residual strains are generated in the fibers and tensile residual strains are generated in the matrix, parallel to the fibers. Liquid-nitrogen dipping and thermal cycling tend to reduce the fabrication-induced residual strains in silicon carbide-fiber-reinforced titanium aluminide matrix composites. However, matrix cracking can occur as a result of these processes. The axial residual strains in the matrix were lower in the nickel aluminide matrix than in the titanium aluminide matrix. As the matrix undergoes plastic deformation, residual thermal strains are related to the yield stress of the matrix.
展开▼