首页> 美国政府科技报告 >Prediction of Pilot-Induced Oscillations (PIO) Due to Actuator Rate Limiting Using the Open-Loop Onset Point (OLOP) Criterion
【24h】

Prediction of Pilot-Induced Oscillations (PIO) Due to Actuator Rate Limiting Using the Open-Loop Onset Point (OLOP) Criterion

机译:使用开环起始点​​(OLOp)准则预测由于执行器速率限制导致的先导振荡(pIO)

获取原文

摘要

Rate limiting has been a causal or contributing factor for Pilot Induced Oscillations (PIO). As part of the joint Air Force Institute of Technology/Test Pilot School (AFIT/TPS) program, an examination of the Open-Loop Onset Point (OLOP) criterion, developed by DLR German Aerospace, was conducted to see if it could predict PIO due to rate limiting and to evaluate its potential as a design tool. The criterion was applied to three previous flight test programs involving rate limiting. Findings from this analysis led to the HAVE OLOP flight test which was flown on the NF-16D Variable Stability In-flight Simulator Test Aircraft (VISTA). HAVE OLOP evaluated four longitudinal configurations with rate limiting elements inside the feedback loop. OLOP was found to over-predict PIO in some cases when using maximum stick amplitude as DLR suggests. When using actual stick amplitudes, correlation between OLOP predictions and PIO ratings was good. A new metric called stick ratio was developed to help explore the full range of stick amplitudes when using OLOP. OLOP could be a useful design tool, but because of the strong influence of stick amplitude, engineering judgement would have to be exercised. Recommendations on its use as a design tool are presented.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号