首页> 美国政府科技报告 >EEG Signals Can Be Used to Detect the Voluntary Hand Movements by Using an Enhanced Resource-Allocating Neural Network.
【24h】

EEG Signals Can Be Used to Detect the Voluntary Hand Movements by Using an Enhanced Resource-Allocating Neural Network.

机译:EEG信号可用于通过使用增强的资源分配神经网络来检测自愿手部运动。

获取原文

摘要

This article explores the use of single trial EEG signals to predict the voluntary movements of single hand and two hands. During single-hand movements, three kinds of tasks, grasping, releasing, and holding were considered. The tasks considered during two-hand movements are left and right grasping, left and right releasing, and holding. The subject performs the tasks spontaneously without waiting for and responding to any external cues. In addition, a neural adaptive noise canceller is developed that accomplishes eye blinks suppression. The neural adaptive filter is here implemented by means of a three-layer feed-forward neural network. The feature vectors are formed from the three channels (Fz, C3, and F3). We employ the multilayer perceptron (MLP) with back-propagation learning algorithm and Radial Basis Function (RBF) network with stochastic gradient learning rule for discriminating different patterns of the EEG signals. In the classical approach to RBF and MLP network implementation, the number of hidden units is predetermined. It usually results in too many hidden units. To overcome this drawback, we develop an enhanced resource- allocating network (RAN) for discriminating the EEG patterns. These networks start with no hidden units and grow by allocating new hidden units based on the novelty in the EEG signals, which arrive sequentially. The results of this analysis show that the neural networks would be able to detect the movements of a single hand and two hands with an average classification accuracy of 98.82% and 96.40%, respectively. Moreover, the RAN provides a reduction in the training epochs as compared to the MLP and RBF networks. This work represents a promising approach to control a prosthesis device.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号