首页> 美国政府科技报告 >Automatic Deployment of Transcoding Components for Ubiquitous, Network- Aware Access to Internet Services
【24h】

Automatic Deployment of Transcoding Components for Ubiquitous, Network- Aware Access to Internet Services

机译:自动部署代码转换组件,用于无处不在的网络感知访问Internet服务

获取原文

摘要

Advances in wireless communication together with the growing number of mobile end devices hold the potential of ubiquitous access to sophisticated internet services; however, such access must cope with an inherent mismatch between the low-bandwidth, limited-resource characteristics of mobile devices and the high-bandwidth expectations of many content-rich services. One promising way of bridging this gap is by deploying application-specific components on the path between the device and service, which perform operations such as protocol conversion and content transcoding. Although several researchers have proposed infrastructures allowing such deployment, most rely on static, hand-tuned deployment strategies restricting their applicability in dynamic situations. In this paper, we present an automatic approach for the dynamic deployment of such transcoding components, which can additionally be dynamically reconfigured as required. Our approach relies on three components: (a) a high-level integrated type-based specification of components and network resources, essential for 'late binding' components to paths; (b) an automatic path creation strategy that selects and maps components so as to optimize a global metric; and (c) system support for low-overhead path reconfiguration, consisting of both restrictions on component interfaces and protocols satisfying application semantic continuity requirements. We comprehensively evaluate the effectiveness of our approach over a range of network and end- device characteristics using both a web-access scenario where client performance is for reduced access time, and a streaming scenario where client preference is for increased throughput. Our results verify that (1) automatic path creation and reconfiguration is achievable and does in fact yield substantial performance benefits; and (2) that despite their flexibility, both path creation and reconfiguration can be supported with low run-time overhead.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号