首页> 美国政府科技报告 >Modified Baum-Welch Algorithm for Hidden Markov Models with Multiple Observation Spaces
【24h】

Modified Baum-Welch Algorithm for Hidden Markov Models with Multiple Observation Spaces

机译:具有多个观测空间的隐马尔可夫模型的修正Baum-Welch算法

获取原文

摘要

In this paper, we derive an algorithm similar to the well-known Baum- Welch algorithm for estimating the parameters of a hidden Markov model (HMM). The new algorithm allows the observation PDF of each state to be defined and estimated using a different feature set. We show that estimating parameters in this manner is equivalent to maximizing the likelihood function for the standard parameterization of the HMM defined on the input data space. The processor becomes optimal if the state-dependent feature sets are sufficient statistics to distinguish each state individually from a common state.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号