首页> 美国政府科技报告 >Distributed Beacon Requirements for Branch Point Tolerant Laser Beam Compensation in Extended Atmospheric Turbulence
【24h】

Distributed Beacon Requirements for Branch Point Tolerant Laser Beam Compensation in Extended Atmospheric Turbulence

机译:扩展大气湍流中分支点容差激光束补偿的分布式信标要求

获取原文

摘要

Branch point tolerant phase reconstructors can vastly improve adaptive optic system performance in extended atmospheric turbulence. This thesis explores the performance bounds of two such reconstructors Goldstein's algorithm and hidden phase. A least squares reconstructor is implemented for comparison. System performance is presented for various scenarios, including correction time-delays, wave-front sensor noise, and extended beacons. These scenarios are of interest for laser communication and directed energy systems such as Airborne Laser. Performance bounds are obtained through wave-optics simulation. The extended beacon propagation geometry approximates the USAF AFRL- DE North Oscura Peak range. Results show that branch point tolerant reconstructors outperform least squares for equal correction time-delays. These reconstructors can be made somewhat tolerant to wave-front sensor error. For the case of an incoherent extended beacon, branch point information is lost and the branch point algorithms perform on par with least squares. A coherent extended beacon preserves branch point information, but also induces branch point errors due to coherent speckle. Still, the branch point reconstructors tend to maintain a 1-2 order of magnitude performance advantage over least squares in strong turbulence. While implementation challenges remain, this thesis demonstrates the potential of branch point tolerant phase reconstructors on laser communication and weapons systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号