首页> 美国政府科技报告 >Theoretical Comparison of the Excited Electronic States of the Uranyl and Uranate Ions Using Relativistic Computational Methods.
【24h】

Theoretical Comparison of the Excited Electronic States of the Uranyl and Uranate Ions Using Relativistic Computational Methods.

机译:用相对论计算方法研究铀酰和铀离子激发电子态的理论比较。

获取原文

摘要

This thesis examines the ground and excited electronic states of the uranyl (UO2+) and uranate (UO4-2) ions using Hartree-Fock self-consistent field (HF SCF), multi-configuration self-consistent field (MCSCF) and multi-reference single and double excitation configuration interaction (MR- CISD) methods. The MR-CISD SD calculation included spin-orbit operators. Molecular geometries were obtained from self-consistent field (SCF ) second-order perturbation theory (MP2), and density functional theory (DFT) geometry optimizations using the NWChem 4.01 massively parallel ab initio software package. COLUMBUS version 5.8 was used to perform in-depth analysis on the HF SCF MCSCF and MR-CISD potential energy surfaces. Excited state calculations for the uranyl ion were performed using both a large- and small-core relativistic effective core potential (RECP) in order to calibrate the method. This calibration included comparison to previous theoretical and experimental work on the uranyl ion. Uranate excited states were performed using the small-core RECP as well as the methodology developed using the uranyl ion.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号