首页> 美国政府科技报告 >Polar Stratospheric Cloud Microphysical Properties Measured by the MicroRADIBAL Instrument on 25 January 2000 Above Esrange and Modeling Interpretation
【24h】

Polar Stratospheric Cloud Microphysical Properties Measured by the MicroRADIBAL Instrument on 25 January 2000 Above Esrange and Modeling Interpretation

机译:极地平流层云微物理特性于2000年1月25日由microRaDIBaL仪器测量以上Esrange和建模解释

获取原文

摘要

The balloonborne microRADIBAL instrument is a radiometer that measures the radiance and polarization of the sunlight scattered by the atmosphere, gas, and aerosols in a horizontal plane in the near-infrared range. It was launched from Esrange, Sweden, on 25 January 2000 in the framework of the Third European Stratospheric Experiment on Ozone (THESEO) 2000 campaign, and performed measurements in the vicinity of a large polar stratospheric cloud (PSC). The measurements provide diagrams of the radiance versus scattering angle at several altitudes. The aerosol signature, derived from the radiance measurements, has been modeled via Mie theory and the T-Matrix code. Three different size distributions of aerosols have been tested: monomodal and bimodal size distributions of spherical particles, and bimodal size distributions including a mode of spherical and a mode of nonspherical particles. The best agreement between the measured and modeled signatures is obtained considering a bimodal size distribution composed by a mode of medium spherical particles (median radius about 0.15 mm) and a second mode of larger nonspherical particles (median radius about 1.1 mm, aspect ratio about 0.6). Concentrations and surface densities of the PSC particles have been estimated. The existence of such particles has been tentatively explained using the Lagrangian Microphysical and Photochemical Lagrangian Stratospheric Model of Ozone (MiPLaSMO) model. On 25 January 2000 the polar stratospheric cloud detected by microRADIBAL is associated with a lee-wave event. Temperature perturbations due to lee-wave events were calculated using the National Research Laboratory Mountain Wave Forecast Model (MWFM) and have been included along trajectories. They are localized in a large region between the Norwegian mountains and Esrange. Their amplitude varies from 3 to 7 K. Detailed comparisons between measured and modeled surfaces and dimensional distributions of PSCs' particles are achieved.

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号