首页> 美国政府科技报告 >Optimizing a Synthetic Signaling System, Using Mathematical Modeling to Direct Experimental Work.
【24h】

Optimizing a Synthetic Signaling System, Using Mathematical Modeling to Direct Experimental Work.

机译:优化综合信号系统,利用数学建模指导实验工作。

获取原文

摘要

Synthetic biology uses engineering principles and biological parts to probe existing biological networks and build new biological systems. As biological components become better characterized, synthetic biology can make use of predictive mathematical models to analyze the activity of biological systems. This thesis demonstrates the utility of modeling in optimizing a synthetic signaling system for a bacterial testing platform and advances the use of model-based bacterial systems as an effective tool of plant synthetic biology. Using models in combination with experimental data, I showed that increasing the concentration of a single component of the synthetic signaling system, the PBP, results in a 100 fold increase in sensitivity, and an order of magnitude increase in fold change response in the response of the bacterial testing platform. Additional mathematical exploration of the system identified another component, the number of PhoB inducible promoters, which could be adjusted to further increase maximum signal. In addition, our model has suggested additional avenues of research, including the potential to introduce new functions, such as memory, to the existing circuit. In this way the prototype synthetic signaling system developed by the Medford Lab has been refined to improve detection and generate substantial response, moving the technology closer to real-world use. Once validated, this modeling based protocol, using a microbial platform for developing and optimizing plant synthetic systems, will serve as a foundation for engineering advanced plant synthetic systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号