首页> 美国政府科技报告 >Structural, Elastic, and Electronic Properties of Deformed Carbon Nanotubes Under Uniaxial Strain
【24h】

Structural, Elastic, and Electronic Properties of Deformed Carbon Nanotubes Under Uniaxial Strain

机译:单轴应变下变形碳纳米管的结构,弹性和电子性质

获取原文

摘要

We report structural, elastic, and electronic properties of selected, deformed, single-wall carbon nanotubes under uniaxial strain. We utilized a generalized gradient approximation potential of density functional theory and the linear combination of atomic orbital formalism. We discuss bond-lengths, tubule radii, and the band gaps as functions of tension and compression strain for carbon nanotubes (10,0), (8,4), and (10,10) which have chiral angles of 0, 19.1, and 30 deg relative to the zigzag direction. We also calculated the Young's modulus and the in-plane stiffness for each of these three nanotubes as representatives of zigzag, chiral, and armchair nanotubes, respectively. We found that these carbon nanotubes have unique structural properties consisting of a strong tendency to retain their tubule radii under large tension and compression strains.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号