首页> 美国政府科技报告 >Intensity Modulated Radiation Treatment of Prostate Cancer Guided by High Field MR Spectroscopic Imaging
【24h】

Intensity Modulated Radiation Treatment of Prostate Cancer Guided by High Field MR Spectroscopic Imaging

机译:高场磁共振成像引导下前列腺癌的强度调制放射治疗

获取原文

摘要

This Idea Award (DAMD17-03-1-0023, entitled 'Intensity Modulated Radiation Treatment of Prostate Cancer Guided by High Field MR Spectroscopic Imaging') was awarded to the principal investigator (PI) for the period of May 1, 2003 - April 30, 2006. This is the final report for the grant. The goal of this project is to establish biologically conformal -- as opposed to anatomically conformal -- IMRT as a viable modality through integration with 3T magnetic resonance spectroscopic imaging (MRSI) to more effectively kill prostate tumor cells. The underlying hypothesis driving this work is that the MRSI-guided IMRT will provide substantially improved dose distributions required to achieve greater local tumor control while maintaining, or reducing, complications to sensitive structures. The specific aims of the project are: (1) To establish a robust procedure for registering and mapping of MR spectroscopic data to CT/MRI images for prostate irradiation. (2) To develop an inverse planning system for MRSI-guided IMRT prostate treatment and demonstrate the feasibility of concurrent dose escalation to intraprostatic lesion(s) through a set of phantom studies and at least two previously treated prostate cases who had undergone CT/MRSI scans. Under the generous support from the U.S. Army Medical Research and Materiel Command (AMRMC), the PI has contributed significantly to prostate cancer research by applying physics and engineering knowledge to prostate cancer research. A number of significant conference abstracts and refereed papers have resulted from the support. The preliminary data obtained under the support of the grant has also enabled the PI to start new research initiatives, in particularly, in adaptive prostate radiation therapy. The past year's research activities of the PI are highlighted in the following.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号