首页> 美国政府科技报告 >Using Prosody for Automatic Sentence Segmentation of Multi-Party Meetings
【24h】

Using Prosody for Automatic Sentence Segmentation of Multi-Party Meetings

机译:利用韵律进行多方会议自动句分词

获取原文

摘要

We explore the use of prosodic features beyond pauses, including duration, pitch, and energy features, for automatic sentence segmentation of ICSI meeting data. We examine two different approaches to boundary classification: score-level combination of independent language and prosodic models using HMMs, and feature-level combination of models using a boosting- based method (BoosTexter). We report classification results for reference word transcripts as well as for transcripts from a state-of-the-art automatic speech recognizer (ASR). We also compare results using the lexical model plus a pause- only prosody model, versus results using additional prosodic features. Results show that (1) information from pauses is important, including pause duration both at the boundary and at the previous and following word boundaries; (2) adding duration, pitch, and energy features yields significant improvement over pause alone; (3) the integrated boosting-based model performs better than the HMM for ASR conditions; (4) training the boosting-based model on recognized words yields further improvement.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号