首页> 美国政府科技报告 >Improving Passage Retrieval Using Interactive Elicition and Statistical Modeling
【24h】

Improving Passage Retrieval Using Interactive Elicition and Statistical Modeling

机译:利用交互式触发和统计建模改进通道检索

获取原文

摘要

The University of Maryland and Johns Hopkins University worked together in the 2004 High Accuracy Retrieval from Documents (HARD) track to explore design options for interactive passage retrieval systems. HARD assessors responded to clarification forms by (1) selected additional search terms from an automatically constructed list of potentially discriminating terms, (2) selected relevant passages from an automatically constructed list of possibly relevant passages, and (3) entered additional search terms. Query expansion based on these three types of elicited information yielded statistically significant improvements in R-precision over baselines with and without blind relevance feedback. For topics that requested passages as answers, a preliminary analysis shows that statistical models for passage extent trained on HARD 2003 data yielded a significant improvement over a replication of the University of Maryland's hard-2003 technique for passage extent determination, and the results of the new technique appear to generally be well above the median for HARD 2004 systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号