首页> 美国政府科技报告 >Routing Military Aircraft with a Constrained Shortest-Path Algorithm
【24h】

Routing Military Aircraft with a Constrained Shortest-Path Algorithm

机译:用约束最短路径算法路由军用飞机

获取原文

摘要

We formulate and solve aircraft-routing problems that arise when planning missions for military aircraft that are subject to ground-based threats such as surface-to-air missiles. We use a constrained-shortest path (CSP) model that discretizes the relevant airspace into a grid of vertices representing potential waypoints, and connects vertices with directed edges to represent potential flight segments. The model is flexible: It can route any type of manned or unmanned aircraft; it can incorporate any number of threats; and it can incorporate, in the objective function or as side constraints, numerous mission-specific metrics such as risk, fuel consumption, and flight time. We apply a new algorithm for solving the CSP problem and present computational results for the routing of a high-altitude F/A-18 strike group, and the routing of a medium-altitude unmanned aerial vehicle. The objectives minimize risk from ground-based threats while constraints limit fuel consumption and/or flight time. Run times to achieve a near-optimal solution range from fractions of a second to 80 seconds on a personal computer. We also demonstrate that our methods easily extend to handle turn-radius constraints and round-trip routing.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号