首页> 美国政府科技报告 >Real Time Imaging Analysis Using a Terahertz Quantum Cascade Laser and a Microbolometer Focal Plane Array
【24h】

Real Time Imaging Analysis Using a Terahertz Quantum Cascade Laser and a Microbolometer Focal Plane Array

机译:使用太赫兹量子级联激光器和微测辐射热焦平面阵列的实时成像分析

获取原文

摘要

It is widely published that the terahertz (THz) spectral range has potential for imaging in the fields of military and security applications. The Sensors Research Laboratory previously achieved real-time imaging of concealed objects using a 1mW quantum cascade laser (QCL) and an uncooled vanadium oxide/silicon nitride based microbolometer. This thesis introduces an amorphous silicon based microbolometer with improved NETD in the 8-12 (mu)m infrared spectral range. The QCL is usually operated in pulsed mode with rate in the hundreds of kHz which is much higher than the cut-off frequency of microbolometers of about tens of Hz. This indicates that neither camera should be able to detect the individual pulses of the THz beam. A detailed analysis showed that microbolometers can only detect the average power. Earlier experiments were then reproduced using the amorphous silicon based camera to assess the image quality but found it to be inferior to the silicon nitride based camera. These observations indicate that the absorption of THz in amorphous silicon is much weaker than silicon nitride. Other materials used to conceal military assets were analyzed and imaged to prove in principal the possibility of active THz imaging detection at a distance in narrow atmospheric windows.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号