首页> 美国政府科技报告 >Learning Latent Variable and Predictive Models of Dynamical Systems
【24h】

Learning Latent Variable and Predictive Models of Dynamical Systems

机译:学习动力系统的潜变量和预测模型

获取原文

摘要

In this thesis we propose novel learning algorithms that address the issues of model selection, local minima and instability in learning latent variable models. We show that certain 'predictive' latent variable model learning methods bridge the gap between latent variable and predictive models. We also propose a novel latent variable model, the Reduced-Rank HMM (RR-HMM), that combines desirable properties of discrete and real-valued latent-variable models. We show that reparameterizing the class of RR-HMMs yields a subset of PSRs, and propose an asymptotically unbiased predictive learning algorithm for RR-HMMs and PSRs along with finite-sample error bounds for the RR-HMM case. In terms of efficiency and accuracy, our methods outperform alternatives on dynamic texture videos, mobile robot visual sensing data, and other domains.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号