首页> 美国政府科技报告 >Path Force Control for Friction Stir Welding Processes (Preprint)
【24h】

Path Force Control for Friction Stir Welding Processes (Preprint)

机译:搅拌摩擦焊过程的路径力控制(预印)

获取原文

摘要

In Friction Stir Welding (FSW) processes, force control can be used to achieve good welding quality. This paper presents the systematic design and implementation of a FSW path force controller. The path force is modeled as a nonlinear function of the FSW process parameters (i.e., plunge depth, tool traverse rate, and tool rotation speed). An equipment model, which includes a communication delay, is constructed to relate the commanded and measured tool rotation speed. Based on the dynamic process and equipment models, a feedback controller for the path force is designed using the Polynomial Pole Placement technique. The controller is implemented in a Smith Predictor-Corrector structure to compensate for the inherent equipment communication delay and the controller parameters are tuned to achieve the best closed loop response possible given equipment limitations. In the path force controller implementation, a constant path force is maintained, even in the presence of gaps, and wormhole generation during the welding process is eliminated by regulating the path force.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号