首页> 美国政府科技报告 >Host-Based Multivariate Statistical Computer Operating Process Anomaly Intrusion Detection System (PAIDS)
【24h】

Host-Based Multivariate Statistical Computer Operating Process Anomaly Intrusion Detection System (PAIDS)

机译:基于主机的多变量统计计算机操作过程异常入侵检测系统(paIDs)

获取原文

摘要

Most intrusion detection systems rely on signature matching of known malware or anomaly discrimination by data mining historical network traffic. This renders defended systems vulnerable to new or polymorphic code and deceptive attacks that do not trigger anomaly alarms. A lightweight, self-aware intrusion detection system (IDS) is essential for the security of government and commercial networks, especially mobile, ad-hoc networks (MANETs) with relatively limited processing power. This research proposes a host-based, anomaly discrimination IDS using operating system process parameters to measure the 'health' of individual systems. Principal Component Analysis (PCA) is employed for feature set selection and dimensionality reduction, while Mahalanobis Distance (MD) and is used to classify legitimate and illegitimate activity. This combination of statistical methods provides an efficient computer operating process anomaly intrusion detection system (PAIDS) that maximizes detection rate and minimizes false positive rate, while updating its sense of 'self' in near-real-time.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号