首页> 美国政府科技报告 >Geochemical Tracers of Processes Affecting the Formation of Seafloor Hydrothermal Fluids and Deposits in the Manus Back-Arc Basin
【24h】

Geochemical Tracers of Processes Affecting the Formation of Seafloor Hydrothermal Fluids and Deposits in the Manus Back-Arc Basin

机译:影响马鞍山弧后盆地海底热液和沉积物形成过程的地球化学示踪剂

获取原文

摘要

Systematic differences in trace element compositions (rare earth element (REE), heavy metal, metalloid concentrations) of seafloor vent fluids and related deposits from hydrothermal systems in the Manus back arc basin (Eastern Manus Basin, EMB and Manus Spreading Center, MSC) are used to investigate processes that affect their formation. Processes responsible for observed differences in fluids and deposits from distinct geologic settings include (a) fluid rock interaction (with temperature, pressure and crustal composition as variables), (b) magmatic acid volatile input and, (c) local seawater entrainment and mixing with hydrothermal fluids, coupled with sulfide precipitation and metal remobilization. REE distributions in vent fluids in the Manus Basin exhibit a wide range of chondrite-normalized patterns that contrast with the relatively uniform distributions observed in mid-ocean ridge vent fluids. This heterogeneity is attributed to marked differences in fluid pH and fluoride and sulfate concentrations that significantly affect REE solubility. The data indicate that REEs can be used as indicators of the styles of magmatic acid volatile input in back-arc hydrothermal systems. Anhydrite in deposits record the same range of REE patterns, suggesting that REE distributions preserved in anhydrite can be used as indicators of past magmatic acid volatile input. Vent fluid heavy metal and metalloid concentrations also exhibit considerable differences. High metal concentrations in EMB versus MSC vent fluids reflect low pH, largely from input of magmatic acid volatiles (indicated by fluoride concentrations greater than seawater). In EMB, metal concentrations are locally affected by dissolution of previously deposited sulfide owing to low pH conditions affected by magmatic acid volatile input or seawater entrainment and mixing with hydrothermal fluid that leads to sulfide precipitation and secondary acidity generation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号