首页> 美国政府科技报告 >Quasi-Ballistic Thermal Transport from Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-ray Beams.
【24h】

Quasi-Ballistic Thermal Transport from Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-ray Beams.

机译:利用超快相干软X射线束观察纳米级界面的准弹道热传输。

获取原文

摘要

Fourier theory of thermal transport considers heat transport as a diffusive process where energy flow is driven by a temperature gradient. However, this is not valid at length scales smaller than the mean free path for the energy carriers in a material, which can be hundreds of nanometres in crystalline materials at room temperature. In this case, heat flow will become 'ballistic'--driven by direct point-to-point transport of energy quanta. Past experiments have demonstrated size-dependent ballistic thermal transport through nanostructures such as thin films, superlattices, nanowires and carbon nanotubes. The Fourier law should also break down in the case of heat dissipation from a nanoscale heat source into the bulk. However, despite considerable theoretical discussion and direct application to thermal management in nanoelectronics, nano-enabled energy systems and nanomedicine, this non-Fourier heat dissipation has not been experimentally observed so far. Here, we report the first observation and quantitative measurements of this transition from diffusive to ballistic thermal transport from a nanoscale hotspot, finding a significant (as much as three times) decrease in energy transport away from the nanoscale heat source compared with Fourier-law predictions.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号