首页> 美国政府科技报告 >Ocean Data Assimilation Guidance Using Uncertainty Forecasts
【24h】

Ocean Data Assimilation Guidance Using Uncertainty Forecasts

机译:利用不确定性预测的海洋资料同化指导

获取原文

摘要

This paper discusses preliminary tests on using predicted forecast errors to estimate the impact of observations in correcting the Naval Research Laboratory (NRI.) tide resolving, high resolution regional version of the Navy Coastal Ocean Model (RNCOM) assimilating local observations processed through the NRI. Coupled Ocean Data Assimilation (NCODA) system. Since there will always be a shortfall of data to constraint all sources of uncertainty there is an obvious advantage to optimally guide observations to reduce model errors that could be producing the most negative impacts. The importance of this topic has been further heightened in oceanic applications by the advent of Underwater Automated Vehicles (UAVs) that can bring persistent observations but need to be told where to go and when, following regular schedules. This works tests a technique named the Ensemble Transform Kalman Filter (ETKF) that can be used to automate such adaptive sampling guidance and has been successfully applied for atmospheric modeling optimization. The ETKF uses an ensemble of state-fields from a certain initialization time and rapid low rank solutions of the Kalman filter equations to estimate integrated predicted error reduction for selected target ensemble variables, or combinations of variables, over areas and forecast ranges of interest. The error estimates are produced through independent RNCOM runs using perturbed forcing and initial conditions constrained at each analysis time by new estimates of the analysis errors as provided by NCODA, using a technique named Ensemble Transform (ET).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号