首页> 美国政府科技报告 >Orthonormal Series Expansions of Certain Distributions and Distributional Transform Calculus
【24h】

Orthonormal Series Expansions of Certain Distributions and Distributional Transform Calculus

机译:一类分布的正交级数展开与分布变换微积分

获取原文

摘要

A technique for expanding certain Schwartz distributions into series of orthonormal functions is devised. The method works for all the classical orthogonal polynomials and many other sets of orthogonal functions. This result is then used to generalize various standard integral transforms, which are based on orthogonal series expansions, to distributions. As specific examples, the following distributional transforms are developed: the finite Fourier transform, the Laguerre transform, the Hermite transform, the Jacobi transform, the Legendre transform, the Chebyshev transform, the Gegenbauer transform, the finite Hankel transform of zero order. An application to the solution of differential equations is given. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号