首页> 美国政府科技报告 >Bounds on Truncation Error for the Cardinal Sampling Expansion
【24h】

Bounds on Truncation Error for the Cardinal Sampling Expansion

机译:基数采样扩展的截断误差界限

获取原文

摘要

It is well-known that a function bandlimited to (-pi, pi) and having a Fourier transform which is either square integrable or absolutely integrable can be represented exactly for all time by an infinite series involving the sample values of the function at the integer points. If the summation involves only a finite number of terms, then an approximation to the bandlimited function is obtained. We define the difference between the given function and the finite approximation to it as a truncation error. Studies concerning bounds on the magnitude of the truncation error are reported here. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号