首页> 美国政府科技报告 >Two Characterizations of Proper Circular-Arc Graphs
【24h】

Two Characterizations of Proper Circular-Arc Graphs

机译:正圆弧图的两个刻画

获取原文

摘要

An unoriented, irreflexive graph G is a proper circular-arc graph if there exists a proper family F of circular arcs ('proper' means no arc of F contains another) and a 1-1 correspondence between the vertices of G and the circular arcs in F such that two distinct vertices of G are adjacent if and only if the corresponding circular arcs in F intersect. The family F is called a proper circular-arc model for G. The fundamental problem is: Given a graph G, under what conditions can one construct a proper circular-arc model for G. Two characterizations of proper circular-arc graphs are given, one in terms of a circular property of the adjacency matrix and the other in terms of forbidden subgraphs (like Kuratowski's famous characterization of planar graphs). (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号